European Ocean Biodiversity Information System

[ report an error in this record ]basket (0): add | show Print this page

Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Mears, C.; Thomas, H.; Henderson, P.B.; Charette, M.A.; MacIntyre, H.; Dehairs, F.; Monnin, C.; Mucci, A. (2020). Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago. Biogeosciences 17(20): 4937-4959. https://hdl.handle.net/10.5194/bg-17-4937-2020

Additional data:
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189
Peer reviewed article  

Available in  Authors 
    Vlaams Instituut voor de Zee: Open access 361122 [ download pdf ]

Keyword
    Marine/Coastal

Authors  Top 
  • Mears, C.
  • Thomas, H.
  • Henderson, P.B.
  • Charette, M.A.
  • MacIntyre, H.
  • Dehairs, F.
  • Monnin, C.
  • Mucci, A.

Abstract
    As a shelf-dominated basin, the Arctic Ocean and its biogeochemistry are heavily influenced by continental and riverine sources. Radium isotopes (226Ra, 228Ra, 224Ra, and 223Ra), are transferred from the sediments to seawater, making them ideal tracers of sediment–water exchange processes and ocean mixing. As the two long-lived isotopes of the radium quartet, 226Ra and 228Ra (226Ra with a t1∕2 of 1600 years and 228Ra with a t1∕2 of 5.8 years) can provide insight into the water mass compositions, distribution patterns, as well as mixing processes and their associated timescales throughout the Canadian Arctic Archipelago (CAA). The wide range of 226Ra and 228Ra activities, as well as of the 228Ra∕226Ra, measured in water samples collected during the 2015 GEOTRACES cruise, complemented by additional chemical tracers – dissolved inorganic carbon (DIC), total alkalinity (AT), barium (Ba), and the stable oxygen isotope composition of water (δ18O) – highlight the dominant biogeochemical, hydrographic, and bathymetric features of the CAA. Bathymetric features, such as the continental shelf and shallow coastal sills, are critical in modulating circulation patterns within the CAA, including the bulk flow of Pacific waters and the inhibited eastward flow of denser Atlantic waters through the CAA. Using a principal component analysis, we unravel the dominant mechanisms and apparent water mass end-members that shape the tracer distributions. We identify two distinct water masses located above and below the upper halocline layer throughout the CAA and distinctly differentiate surface waters in the eastern and western CAA. Furthermore, we highlight water exchange across 80 W, inferring a draw of Atlantic water (originating from Baffin Bay) into the CAA. This underscores the presence of an Atlantic water “U-turn” located at Barrow Strait, where the same water mass is seen along the northernmost edge at 80 W as well as along the southeasternmost confines of Lancaster Sound. Overall, this study provides a stepping stone for future research initiatives within the Canadian Arctic Archipelago, revealing how quantifying disparities in the distributions of radioactive tracers can provide valuable information on water mass distributions, flow patterns, and mixing within vulnerable areas such as the CAA.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors